2.1 COMMUNICATION SKILLS - II

RATIONALE

Language is the most commonly used and effective medium of self-expression in all spheres of human life – personal, social and professional. A student must have a fair knowledge of English language and be able to pursue the present course of study and handle the future jobs in industry. The objective of this course is to assist the diploma holders to acquire proficiency, both in spoken (oral) and written language. At the end of the course, the student will be able to develop comprehension, improve vocabulary, develop grammatical ability, enhance writing skills, correspond with others, enhance skills in spoken English.

DETAILED CONTENTS

1. Prose Text Book (12 hrs)

The following six chapters of A Book of English for Polytechnics – Prose Selection, Published by MacMillan India Ltd., on behalf of Technical Teachers’ Training Institute, Chandigarh

a) Uncle Podger Hangs a Picture
b) Subash Chandra Bose
c) A Pair of Mustachios
d) Guru Gobind Singh
e) With The Photographer
f) Sir Jagdish Chandra Bose

There will be one general question from one of these six chapters.

2. Precise writing (selected from the prescribed 6 chapters of Prose Text Book) (4 hrs)

3. Grammar (2 hrs)

Antonyms change of words into different parts of speech

4. Correspondence (10 hrs)

a) Business letters such as:
 - Registration as supplier
 - Floating quotations and tenders
 - Quarry for product specification, price and other details etc from a firm/Company
 - Covering letter for quoting prices against a quotation/tender
 - Placing supply order
b) Personal letters such as:

- Application for leave and extension of leave
- Application for seeking a job/employment
- Conveying congratulation messages to a relative/friend/colleague on different occasions
- Conveying condolence message to a relative/friend/colleague
- Request letter to guardian for sending money for excursion/study tour
- Letter to your brother/sister/friend describing your first day experience in the polytechnic

c) Official letters such as:

- Letter to editor for placing an advertisement in the newspaper for purchase/selling of goods
- Letter to Municipal Commissioner for improving water supply/sanitation system in your locality
- Letter to General Manager, Telephone Department for restoring a dead telephone/shifting a telephone
- Letter to State Electricity Board for repair of street lighting/correction of bills etc.
- Letter to the supplier for rectifying or replacing a defective machinery/item of purchase
- Letter to Registrar, State Board of Technical Education for allowing to improve grades/marks in diploma examination

5. Report Writing (2 hrs)

- Drafting a technical report of a visit to a factory, construction site, modern office, etc.
- Report writing on current general themes/topics related to economy, industry, social issues
- Elements of periodical progress report

6. Inspection Note (2 hrs)

- Write an inspection note after inspecting technical/industrial goods
- Write an inspection note after visiting a construction site or production shop

7. Writing “Preface” and “acknowledgement” of a project report (2 hrs)

8. A paragraph on current topics/themes (2 hrs)

 Technology
Science
Economy
Politics
Social
General

9. Vocabulary (2 hrs)
- words, idioms, phrases, antonyms and synonyms
- Translation of 100 most popular administrative terms from English to Hindi and from Hindi to English

10. Drafting (4 hrs)
- Press notes
- Memos/circulars
- Notices (lost and found: obituary/auction, etc)
- Telegrams
- Press releases
- Agenda and minutes of the meeting
- Personal resume/curriculum vitae

11. Communication Techniques (6 hrs)
- Importance of communication
- Types of communication – verbal and non-verbal
- One way and two way communication
- Process of communication – horizontal, vertical, upward, downward
- Essentials of good communication
- Level of communication – inter and intra personal, group to person, group to group
- Methods of effective oral, written and non-verbal communication, Horizons – tone, frequency, rate, volume, depth
- Barrier to communication and overcoming barriers
- Listening skill
- Use of audio visual aids for effective communication

LIST OF PRACTICALS

1. Presentation of Technical Report, using Audio-visual aids
2. Preparation and Presentation on a Seminar of a given topic/theme using power-point
3. Telephonic conversation – Conveying and Receiving
4. Mock Exercises for an interview for a job/employment
5. Listening comprehension from a radio/cassette talk in English
6. Extempore speech

7. Oral presentation with stress on proper body language, voice modulation

Note: For reading comprehension, listening comprehension and effective speaking skills, English Language Laboratory Manual and Workbook published by State Board of Technical Education, Hyderabad (AP) may be used along with text book

RECOMMENDED BOOKS

1. Essentials of Business Communication by Pal and Rorualling; Sultan Chand and Sons

2. The Essence of Effective Communication, Ludlow and Panthon; Prentice Hall of India

3. New Design English Grammar, Reading and Writing Skills by AL Kohli (Course A and course B), Kohli Publishers, 34 Industrial Area Phase-II, Chandigarh,

4. New Design English Reading and Advanced Writing Skills for Class XI and XII by MK Kohli and AL Kohli; Kohli Publishers, 34 Industrial Area Phase-II, Chandigarh,

5. A Practical English Grammar by Thomson and Marlinet

6. Spoken English by V Sasikumar and PV Dhamija; Tata McGraw Hill

7. English Conversation Practice by Grount Taylor; Tata McGraw Hill

8. Developing Communication Skills by Krishna Mohan and Meera Banerji; MacMillan India Ltd., Delhi

2.2 APPLIED MATHEMATICS – II

RATIONALE

Applied Mathematics forms the backbone of engineering discipline. Basic elements of differential calculus, integral calculus, differential equations and coordinate geometry have been included in the curriculum as foundation course and to provide base for continuing education to the students.

DETAILED CONTENTS

1. Co-ordinate Geometry (18 hrs)

1.1 Area of a triangle, centroid and incentre of a triangle (given the vertices of a triangle), Simple problems on locus

1.2 Equation of straight line in various standard forms (without proof) with their transformation from one form to another, Angle between two lines and perpendicular distance formula (without proof)

1.3 Circle: General equation and its characteristics given:
 ➢ The center and radius
 ➢ Three points on it
 ➢ The co-ordinates of the end’s of the diameter

1.4 Conics (parabola, ellipse and hyperbola), standard equation of conics (without proof), given the equation of conic to calculate foci, directrix, eccentricity, latus rectum, vertices and axis related to different conics

2. Differential Calculus (22 hrs)

2.1 Concept of function, four standard limits

\[
\begin{align*}
 \lim_{x \to a} \frac{x^n - a^n}{x - a}, & \quad \lim_{x \to 0} \frac{\sin x}{x}, & \quad \lim_{x \to 0} \frac{(a^x - 1)}{x}, & \quad \lim_{x \to 0} (1+x)^{1/x}
\end{align*}
\]

2.2 Concepts of differentiation and its physical interpretation

➢ Differentiation by first principle of \(x^n\), \((ax + b)^n\), \(\sin x\), \(\cos x\), \(\tan x\), \(\sec x\), \(\cosec x\) and \(\cot x\), \(e^x\), \(a^x\), \(\log x\). Differentiation of a function of a function and explicit and implicit functions

➢ Differentiation of sum, product and quotient of different functions

➢ Logarithmic differentiation. Successive differentiation excluding \(n^{th}\) order
2.3 Application of derivatives for (a) rate measure (b) errors (c) real root by Newton’s method (d) equation of tangent and normal (c) finding the maxima and minima of a function (simple engineering problems)

3. Integral Calculus (16 hrs)

3.1 Integration as inverse operation of differentiation

3.2 Simple integration by substitution, by parts and by partial fractions

3.3 Evaluation of definite integrals (simple problems) by explaining the general properties of definite integrals

3.4 Applications of integration for
- Simple problem on evaluation of area under a curve where limits are prescribed
- Calculation of volume of a solid formed by revolution of an area about axis (simple problems) where limits are prescribed
- To calculate average and root mean square value of a function
- Area by Trapezoidal Rule and Simpson’s Rule

4. Differential Equations (8 hrs)

Solution of first order and first degree differential equation by
- Variable separation
- Homogeneous differential equation and reducible homogeneous differential equations
- Linear differential equations and reducible linear differential equations

RECOMMENDED BOOKS

1. Higher Engineering Mathematics by BS Grewal
2. Engineering Mathematics by BS Grewal
4. Engineering Mathematics by Ishan Publication
5. Applied Mathematics Vol. II by SS Sabharwal and Others; Eagle Parkashan, Jalandhar
6. Engineering Mathematics by IB Prasad
7. Applied Mathematics Vol. II by Dr RD Sharma
2.3 APPLIED PHYSICS – II

RATIONALITY

Applied physics includes the study of a large number of diverse topics related to things that go in the world around us. It aims to give an understanding of this world both by observation and prediction of the way in which objects behave. Concrete use of physical principles and analysis in various fields of engineering and technology are given prominence in the course content.

DETAILED CONTENTS

1. Applications of sound waves (6 hrs)
 1.1 Acoustics of buildings – reverberation, reverberation time, echo, noise, coefficient of absorption of sound, methods to control reverberation time
 1.2 Ultrasonics – production (magnetostriction and piezo-electric) and their engineering applications

2. Principle of optics (9 hrs)
 2.1 Introduction: reflection of light, image formation in mirrors (convex and concave), refraction and refractive index, image formation in lenses, lens formulae (thin lens only), power of lens, total internal reflection
 2.2 Defects in image formation by lenses and their correction
 2.3 Simple and compound microscope, astronomical and Galileo telescope, magnifying power and its calculation (in each case)
 2.4 Overhead projector and slide projector

3. Electrostatics (9 hrs)
 3.1 Coulombs law, unit charge
 3.2 Gauss's Law
 3.3 Electric field intensity and electric potential
 3.4 Electric field of point charge, charged sphere (conducting and non-conducting), straight charged conductor, plane charged sheet
3.5 Capacitance, types of capacitors, capacitance of parallel plate capacitor, series and parallel combination of capacitors

3.6 Dielectric and its effect on capacitors, dielectric constant and dielectric break down

4. Electricity (6 hrs)

4.1 Ohm’s law

4.2 Resistance of a conductor, specific resistance, series and parallel combination of resistors, effect of temperature on resistance

4.3 Kirchhoff’s laws, wheatstone bridge principle and its applications

4.4 Heating effect of current and concept of electric power

5. Semiconductor physics (9 hrs)

5.1 Energy bands, intrinsic and extrinsic semiconductors, p-n junction diode and its characteristics

5.2 Diode as rectifier – half wave and full wave rectifier, semiconductor transistor pnp and npn (concept only)

6. Modern Physics (9 hrs)

6.1 Lasers: concept of energy levels, ionization and excitation potentials; spontaneous and stimulated emission; lasers and its characteristics, population inversion, types of lasers, helium – neon and ruby lasers and applications

6.2 Fibre optics: Introduction, optical fiber materials, types, light propagation and applications

6.3 Super conductivity: Phenomenon of super conductivity, effect of magnetic field, critical field, type I and type II super conductors and their applications

6.4 Energy sources – conventional and non-conventional (wind, water, solar, bio, nuclear energy), only elementary idea

LIST OF PRACTICALS

1. To verify Ohm’s law

2. To verify law of resistances in series and in parallel
3. To determine the magnifying power of a compound microscope
4. To determine the magnifying power of an astronomical telescope
5. To convert a galvanometer into an ammeter of a given range
6. To convert a galvanometer into a voltmeter of a given range
7. To find the wavelength of a He-Ne laser
8. To find the frequency of a tuning fork by a sonometer
9. To study characteristics of a pn junction diode

RECOMMENDED BOOKS

2. Basic Applied Physics by RK Gaur; Dhanpat Rai Publications
3. Comprehensive Practical Physics - Volume I and II by JN Jaiswal; Laxmi Publishers
5. Simple Course in Electricity and Magnetism by CL Arora; S Chand and Co, New Delhi
6. Fundamental Physics - Volume I and II by Gomber and Gogia; Pardeep Publications, Jalandhar
7. A Text Book of Optics by Subramanian and Brij Lal
10. Concepts in Physics by HC Verma; Bharti Bhawan Ltd., New Delhi
2.4 APPLIED CHEMISTRY-II

RATIONALE

The role of Chemistry and chemical products in every branch of engineering is expanding greatly. Nowadays various products of chemical industries are playing an important role in the field of engineering with increasing number of such products each successive year. The strength of materials, the chemical composition of substances, their behaviour when subjected to different treatment and environment, and the laws of heat and dynamic energy have entered in almost every activity of modern life. Chemistry is considered as one of the core subjects for diploma students in engineering and technology for developing in them scientific temper appreciation of chemical properties of materials, which they have to handle in their professional career. Effort should be made to teach this subject through demonstration and with the active involvement of students.

DETAILED CONTENTS

1. Metallurgy (8 hrs)
 1.1 A brief introduction of the terms: Metallurgy (types), mineral, ore, gangue or matrix, flux, slag, concentration (methods of concentrating the ores), roasting calcination and refining as applied in relation to various metallurgical operations
 1.2 Metallurgy of (i) Aluminium (ii) Iron with their physical and chemical properties
 1.3 Definition of an alloy, purposes of alloying, composition, properties and uses of alloys-brass, bronze, monel metal, magnalium, duralumin, alnico and invar

2. Fuels (10 hrs)
 2.1 Definition of a ‘Fuel’, characteristics of a good fuel and classification of fuels with suitable examples
 2.2 Definition of Calorific value of a fuel and determination of calorific value of a liquid fuel with the help of Bomb calorimeter. Simple numerical problems based upon Bomb-calorimeter method of finding the Calorific values
 2.3 Brief description of ‘Proximate’ and ‘Ultimate’ analysis of a fuel. Importance of conducting the proximate and ultimate analysis of a fuel
 2.4 Qualities of a good fuel and merits of gaseous fuels over those of other varieties of fuels
 2.5 Manufacture, composition, properties and uses of (i) Water gas (ii) Oil gas (iii) Biogas
3 Corrosion (3 hrs)

3.1 Meaning of the term 'corrosion' and its definition

3.2 Theories of corrosion i.e. (i) direct chemical action theory and (ii) electro chemical theory

3.3 Prevention of corrosion by
 1. (a) Alloying
 (b) Providing metallic coatings
 2. Cathodic protections:
 (a) Sacrificial
 (b) Impressed voltage method

4 Lubricants (4 hrs)

4.1 Definition of (i) lubricant (ii) lubrication

4.2 Classification of lubricants

4.3 Principles of lubrication
 (i) fluid film lubrication
 (ii) boundary lubrication
 (iii) extreme pressure lubrication

4.4 Characteristics of a lubricant such as viscosity, viscosity index, volatility oiliness, acidity, emulsification, flash point and fire point and pour point.

5 Cement and Glass (2 hrs)

5.1 Manufacture of Portland Cement

5.2 Manufacture of ordinary glass and lead glass

6. Classification and Nomenclature of Organic Compounds (5 hrs)

LIST OF PRACTICALS

1. Gravimetric analysis and study of apparatus used there in
2. To determine the percentage composition of a mixture consisting of a volatile and a non-volatile substances

3. Determine the viscosity of a given oil with the help of “Redwood viscometer”

4. Determine the flash point of the given oil with the help of Abel’s Flash Point Apparatus

5. Estimate the amount of moisture in the given sample of coal

6. Estimate the amount of ash in the given sample of coal

7. Electroplate the given strip of Cu with Ni

8. Confirmation test of alcohol, aldehydes, carboxylic acid, amine

9. Determination of copper in the given brass solution, or sample of blue vitriol volumetrically

10. Detection of metal iron in the rust (solution of rust in concentrated HCL may be given).

RECOMMENDED BOOKS

2. Engineering Chemistry by Dr. S. Rabindra and Prof. B.K. Mishra ; Kumar and Kumar Publishers (P) Ltd. Bangalore-40

3. “A Text Book of Applied Chemistry-I” by SS Kumar; Tata McGraw Hill, Delhi

4. “A Text Book of Applied Chemistry-I” by Sharma and Others; Technical Bureau of India, Jalandhar

5. Engineering Chemistry by Jain PC and Jain M

6. Chemistry of Engineering by Aggarwal CV

7. Chemistry for Environmental Engineers by Swayer and McCarty, McGraw Hill, Delhi

8. Progressive Applied Chemistry –I and II by Dr. G.H. Hugar; Eagle Prakashan, Jalandhar
2.5 GENERAL ENGINEERING

L T P
3 - 2

RATIONALE

An engineering diploma holder has to assist in activities of civil construction, installation, operation and maintenance etc of different machines and equipment. These activities are not branch specific and instead require him to know basics of civil, electrical and mechanical engineering. The subject of General Engineering has been included to impart basic knowledge of civil, electrical and mechanical engineering to the students.

Note:

1. The students of civil engineering will be studying only Part A (Mechanical Engineering) and Part B (Electrical Engineering)
2. The students of Electrical engineering, Electronics and Communication Engineering, Instrumentation and Control, Computer Engineering and Information Technology will be studying only Part A (Mechanical Engineering) and Part C (Civil Engineering)
3. The students of Mechanical Engineering will be studying only Part B (Electrical Engineering) and Part C (Civil Engineering)
4. The students of other branches of engineering and technology will be studying all the three Parts A (Mechanical Engineering), Part B (Electrical Engineering) and Part C (Civil Engineering), unless specified otherwise
5. A time of 2 hours per week has been allotted to Mechanical Engineering, 2 hours per week to Electrical Engineering and 1 hour per week to Civil Engineering in the lecture hours, for teaching theory and a lump-sum time of 2 hours week has been allotted for the Practicals.

DETAILED CONTENTS
PART-A

MECHANICAL ENGINEERING

Theory

1. Transmission of Power: (8 hrs)
 1.1 Transmission of power through belt, rope drives and pulleys, gears and chains
 1.2 Different type of pulleys and their application
 1.3 Chain drives and its comparison with belt drive
 1.1 Gear drives, types of gears, simple gear trains and velocity ratio

2. Internal combustion Engines: (14 hrs)
 2.1 Classification and application of IC Engines commonly used: spark ignition and compression ignition engines.
 2.2 Working principles of two stroke and four stroke petrol and diesel engines
2.3 Ignition system in petrol engines i.e. spark ignition, magneto ignition
2.4 Spark plug
2.5 Carburetor
2.6 Cooling system of IC Engines: Lubrication of IC Engines
2.7 General maintenance of engines

3. Air Conditioning System: (8 hrs)
 3.1 Basic principle of refrigeration and air conditioning
 3.2 Working of centralized air conditioner
 3.3 Concept of split air conditioner and its applications

4. Pumps: Types and their uses (2 hrs)

PRACTICAL EXERCISES IN MECHANICAL ENGINEERING

1. Study of main parts of 4 stroke petrol and diesel engines by actually dismantling them (The idea is to acquaint the students with the most common troubles occurring in the engines)
2. Study of main parts of 2 stroke petrol engine by actually dismantling it. (The idea is to acquaint the students with the most common trouble occurring in the engines)
3. Study of ignition system of petrol engines
4. Study of fuel and air circuit of a petrol engine
5. Study of fuel injection system and air circuit of a diesel engine
6. Study of cooling system and lubricating (including greasing) of an IC Engine
7. Study of friction clutch
8. Study of hydraulic brake
9. Study of various drives for transmission of powers. Models of belts, pulleys, gears, chains and clutches
10. Study of air conditioning system in a building

NOTE: Study will include dismantling and reassembling of actual parts

PART B

ELECTRICAL ENGINEERING

Theory

5. Application and Advantages of Electricity: (3 hrs)
 5.1 Difference between AC and DC
 5.2 Various applications of electricity
 5.3 Advantages of electrical energy over other types of energy

6. Basic Quantities of Electricity: (4 hrs)
6.1 Definition of voltage, current, power and energy with their units
6.2 Name of the instruments used for measurement of quantities given in 5.1
6.3 Connection of the instruments in 5.2 in electric circuit

7. Various Types of Power Plants: (4 hrs)
7.1 Elementary block diagram of thermal, hydro and nuclear power stations
7.2 Brief explanation of the principle of power generation in above power stations

8. Elements of Transmission Line: (4 hrs)
8.1 Pictorial diagram of a three-phase transmission and distribution system showing transformers, supports, conductors, insulators and earth wire etc.
8.2 Brief function of accessories of transmission lines
8.3 Earthing of lines, substation and power station - need and practices adopted

9. Distribution System: (4 hrs)
9.1 Distinction between high and low voltage distribution system
9.2 Identification of three phase wires, neutral wires and the earth wire on a low voltage distribution system
9.3 Identification of the voltage between phases and between one phase and neutral
9.4 Distinction between three phase and single phase supply

10. Supply from the Poles to the Distribution Board: (3 hrs)
10.1 Arrangement of supply system from pole to the distribution board
10.2 Function of service line, energy meter, main switch, distribution board

11. Domestic Installation: (4 hrs)
11.1 Distinction between light and fan circuits and single phase power circuit, sub circuits
11.2 Various accessories and parts of installation, identification of wiring systems
11.3 Common safety measures and earthing
11.4 Introduction to BIS code of safety and wiring installation

12. Electric Motors and Pumps: (6 hrs)
12.1 Definition and various application of single phase and three phase motors
12.2 Connection and starting of three phase motors by star delta starter
12.3 Conversion of horse power in watts or kilowatts
12.4 Type of pumps and their applications

PRACTICAL EXERCISES IN ELECTRICAL ENGINEERING:

1. Use of Megger:
Objective: To make the students familiar with different uses of megger

2. Connection of a three phase motor and starter including fuses and reversing of direction of rotation.

 Objective: Students may be made familiar with the equipment needed to control a three-phase motor

 The students must experience that by changing any two phases, the direction of rotation is reversed.

3. Connection of a lamp, ceiling fan, socket outlet, geyser, floor grinder, voltage stabilizer etc.

 Objective: Students may be made familiar with the different types of equipment and circuits used in the domestic installations

4. Trouble shooting in a three-phase motor

 Note: The teacher may create anyone of the following faults
 (a) Loose connections
 (b) Blown fuse
 (c) Tripped overload protection
 (d) Incorrect direction of rotation
 (e) Single phasing
 (f) Burnt winding to be simulated by a loose connection behind a terminal box.

 Objective: The students must be able to detect the most common faults, which may occur in a three-phase motor, using meggar wherever necessary

5. Trouble shooting in a domestic wiring system.

 Note: The teacher may introduce a fault in the existing wiring system of a classroom or workshop like
 (a) blown fuse
 (b) loose connection
 (c) faulty components/accessories etc.

 Objective: Students must be able to detect common faults which may occur in a domestic wiring system

6. Treatment of electric shock

 Note: The teacher may give a demonstration how an electric shock must be treated.

 Objective: Students must be trained to treat the persons suffering from an electric shock

7. Study of a distribution Board
Note: Students may be asked to study the distribution board in the institution and note down all accessories.

Objective: Students must be made familiar with the distribution board

8. Connections and reading down an energy meter
Objective: Students may be asked to connect an energy meter to a load and calibrate reading

9. Demonstration in electrical machine laboratory
Objective: Students may be shown different types of electrical machines and their starters and should be told that the three phase induction motors are most commonly used.

10. Study of submersible motor pump set:
Objective: To tell use of the set in water supply and irrigation works.

PART C

CIVIL ENGINEERING

Theory

13. Construction Materials (3 hrs)
Basics of various construction materials such as stones, bricks, lime, cement and timber along with their properties, physical/field testing and uses, elements of brick masonry.

14. Foundations (6 hrs)
i) Bearing capacity of soil and its importance
ii) Types of various foundations and their salient features, suitability of various foundations for heavy, light and vibrating machines

15. Concrete (4 hrs)
Various ingredients of concrete, different grades of concrete, water cement ratio, workability, physical/field testing of concrete, mixing of concrete

16. RCC (3 hrs)
Basics of reinforced cement concrete and its use (elementary knowledge), introduction to various structural elements of a building

PRACTICAL EXERCISES IN CIVIL ENGINEERING

1. Testing of bricks
 a) Shape and size
 b) Soundness test
 c) Water absorption
d) Crushing strength

2. Testing of concrete
 a) Slump test
 b) Compressive Strength of concrete cube

3. The students should be taken to different construction sites to show them various construction materials, concreting process and construction of RCC structural elements, foundations and other civil works

INSTRUCTIONAL STRATEGY

While imparting instructions, teachers are expected to lay more emphasis on concepts and principles. It will be better if the classes for general engineering are conducted in the laboratories and organized demonstrations for explaining various concepts and principles.

RECOMMENDED BOOKS

Mechanical Engineering
1. General Mechanical Engineering by M. Adithan; TTTI, Chandigarh
2. Basic Civil and Mechanical Engineering by Jayagopal; Vikas Publications, New Delhi
3. IC Engines and Automobile Engineering by Dr. MP Poonia, Standard Publishers, New Delhi
4. Refrigeration and Air Conditioning by RK Rajput; SK Kataria and sons; Ludhiana
5. Theory of Machines by RS Khurmi and JK Gupta; S. Chand and Company Ltd., New Delhi

Electrical Engineering
1. Electrical Technology Part 1: Basic Electrical Engineering by Theraja, BL; S Chand and Company, New Delhi
2. Principles of Electrical Engineering by Gupta BR; S Chand and Company, New Delhi
3. Basic Electrical Engineering by Mehta VK; S Chand and Company, New Delhi
5. Basic Electrical and Electronics Engineering by SK Sahdev; Dhanpat Rai and sons, New Delhi
7. Basic Electricity by BR Sharma; Satya Parkashan, New Delhi

Civil Engineering
5. Building Construction by J Jha and Sinha; Khanna Publishers, Delhi
7. Civil Engineering Materials by SV Deodhar and Singhai; Khanna Publishers, Delhi
8. Soil Mechanics and foundation Engineering by SK Garg; Khanna Publishers, Delhi
2.6 ENGINEERING DRAWING – II

RATIONALE

Drawing is said to be the language of engineers and technicians. Reading and interpreting engineering drawing is their day-to-day responsibility. The course is aimed at developing basic graphic skills so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation.

Note:
1. First angle projection is to be followed
2. Minimum of 15 sheets to be prepared by each student
3. SP 46 – 1988 should be followed
4. Instructions relevant to various drawings may be given along with appropriate demonstration, before assigning drawing practice to the students

DETAILED CONTENTS

1. Detail and Assembly Drawing (2 sheets)
 1.1 Principle and utility of detail and assembly drawings
 1.2 Wooden joints i.e. corner mortice and tenon joint, Tee halving joint, Mitre faced corner joint, Tee bridle joint, Crossed wooden joint, Cogged joint, Dovetail joint, Through Mortice and Tenon joint, Corner and Through halving joint, Closed Mortise and Tenon joint

2. Threads (3 sheets)
 2.1 Nomenclature of threads, types of threads (metric), single and multiple start threads
 2.2 Forms of various external thread sections such as V, square and acme threads, BA, BSW and Knuckle, Metric, Seller Thread, Buttress Threads
 2.3 Simplified conventions of left hand and right hand threads, both external and internal threads

3. Locking Devices (1 sheet)
 Lock nuts, castle nuts, split pin nuts, sawn nuts, slotted nut
4. Nuts and Bolts (3 sheets)

Different views of hexagonal and square nuts; Different views of hexagonal and square nuts; Assembly of hexagonal headed, square headed, square headed with square neck bolts with hexagonal and square nuts and washers. Foundations bolts – Rag bolt and Lewis bolt

5. Screws, Studs and Washers (1 sheet)

5.1 Drawing various types of machine screws

5.2 Drawing various types of studs and set screws

6. Keys and Cotters (3 sheets)

6.1 Various types of keys and cotters and their practical application and preparation of drawing of various keys and cotters showing keys and cotters in position

6.2 Cotter joints (i) sleeve and cotter joint (ii) gib and cotter joint (iii) knuckle joint (iv) Spigot and socket joint

7. Rivets and Riveted Joints (2 sheets)

7.1 Types of structural and general purpose rivet heads

7.2 Caulking and fullering of riveted joints

7.3 Types of riveted joints – lap, butt (single riveted, double riveted lap joint, single cover plate and double cover plate), chain and zig – zag riveting

8. Welded Joints (1 sheet)

8.1 Various conventions and symbols of welded joints (IS 696)

8.2 Practical applications of welded joints say joints on steel frames, windows, doors and furniture

9. Couplings (2 sheets)

9.1 Muff or Box coupling, half lap muff coupling

9.2 Flange coupling (Protected and non-protected)

9.2 Flexible coupling

10. Symbols and Conventions (2 sheets)
10.1 Civil engineering sanitary fitting symbols
10.2 Electrical fitting symbols for domestic interior installations
10.3 Building plan drawing with electrical and civil engineering symbols

11. Development of Surfaces (3 sheets)
11.1 Construction of geometrical figures such as square, pentagon, hexagon
11.2 Development of surfaces of cylinder, square, pentagonal and hexagonal, Prism, Cone and Pyramid, Sequence pentagonal and hexa pyramid

12. Inter-penetration of (2 sheets)
12.1 Cylinder to cylinder
12.2 Cylinder to cone

13. AUTO CAD
13.1 Concept of AutoCAD, Tool bars in AutoCAD, coordinate system, snap, grid, and ortho mode
13.2 Drawing commands – point, line, arc, circle, ellipse
13.3 Editing commands – scale, erase, copy, stretch, lengthen and explode
13.4 Dimensioning and placing text in drawing area
13.5 Sectioning and hatching
13.6 Inquiry for different parameters of drawing entity

Note: A minimum of 15 sheets should be prepared by each student

RECOMMENDED BOOKS
1. Elementary Engineering Drawing (in first angle projection) by ND Bhatt, Charotar Publishing House
2. A Text Book of Engineering Drawing by Surjit Singh Published by Dhanpat Rai and Co. Delhi
3. Engineering Drawing by PS Gill; published by SK kataria and Sons, New Delhi
2.7 GENERAL WORKSHOP PRACTICE – II

Please see the contents of workshop practice-I (Page 38-42)